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The convective flow in a thin liquid layer with a free surface heated from below is
studied using a combination of accurate experiments with silicone oil (ν = 0.1 cm2 s−1)
and high-resolution direct numerical simulations of the time-dependent governing
equations. It is demonstrated that above a certain value εs of the threshold of primary
instability, ε = 0, square convection cells rather than the seemingly all-embracing
hexagons are the persistent dominant features of Bénard convection. The transition
from hexagonal to square cells sets in via a subcritical bifurcation and is accompanied
by a sudden rapid increase of the Nusselt number. This implies that square cells are the
more efficient mode of heat transport. Their wavenumber exceeds that of hexagonal
cells by about 8%. The transition depends on the Prandtl number and it is shifted
towards higher εs if the Prandtl number is increased. The replacement of hexagonal
by square cells is mediated by pentagonal cells. In the transitional regime from
hexagonal to square cells, characterized by the presence of all three planforms, the
system exhibits complex irregular dynamics on large spatial and temporal scales. The
time dependence becomes more vivid with decreasing Prandtl number until finally
non-stationary square cells appear. The simulations agree with the experimental
observations in the phenomenology of the transition, and in the prediction of both
the higher Nusselt number of square Bénard cells and the subcritical nature of
the transition. Quantitative differences occur with respect to the values of εs and
the Prandtl number beyond which the time dependence vanishes. These differences
are the result of a considerably weaker mean flow in the simulation and of residual
inhomogeneities in the lateral boundary conditions of the experiment which are below
the threshold of control.

1. Introduction
Since the first experiments of Henri Bénard (Bénard 1900), surface-tension-driven

convection in shallow liquid layers has been identified with the hexagonal planform,
partially due to the suggestive power of aesthetic hexagonal patterns, and mostly due
to the absence of reliable experimental and theoretical studies, extending sufficiently
far into the nonlinear regime. The purpose of the present paper is to utilize a
symbiotic combination of laboratory experiments and direct numerical simulation to
advance the understanding of convection in high-Prandtl-number fluids when surface
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tension forces dominate buoyancy. Such flow is referred to as surface-tension-driven
Bénard convection, henceforth abbreviated as STDBC. The main result of our work is
the observation and characterization of square convective cells that appear, beyond a
certain distance from the instability threshold, as a new intrinsic planform of STDBC.
Preliminary accounts of the present work have been given by Nitschke-Eckert & Thess
(1995) and by Bestehorn (1996).

Studies on pattern formation and turbulence driven by temperature gradients
were focused, until the present day, mainly on buoyancy-driven Rayleigh–Bénard
convection (RBC). For this system a rather comprehensive understanding has been
reached in the last years. It comprises the pattern formation in the infinitely extended
system, formulated in Busse’s extensive theory (Busse 1981 and references therein)
and supported by various experiments (Krishnamurti 1970; Busse & Whitehead 1971,
1974), as well as the scaling properties of the Nusselt number over a range of more
than 16 decades of ε = (∆T − ∆Tc)(∆Tc). (∆Tc is the temperature difference required
for onset of convection.) For an overview see e.g. the review article of Siggia (1994).

In comparison with RBC the experimental and theoretical results in the field of
STDBC are more sparse. Below we shall review the existing body of work from a
special point of view, namely up to which value of ε the studies have been extended
and what their results were with respect to pattern selection. For a detailed overview
of STDBC we refer to Velarde & Castillo (1982), Koschmieder (1993) and Simanovskii
& Nepomnyashchy (1993).

Let us now consider in which way experimental work has developed our present
knowledge of Bénard convection. Based on his experiments (ε � 1), Block (1956)
provided evidence that surface tension variations rather than density variations are
the driving force of Bénard convection. The systematic exploration of the weakly
supercritical range, i.e. 0 6 ε 6 0.5, started in the late sixties. Pearson’s (1958) theory
with respect to the critical wavenumber has been verified by Koschmieder (1967). The
critical temperature difference for onset of convection, predicted by a generalization
of Pearson’s theory with respect to buoyancy (Nield 1964), was confirmed by Palmer
& Berg (1971). Later precise experiments by Koschmieder & Biggerstaff (1986) in very
thin layers showed motions far below the critical temperature difference of Pearson’s
theory, and are unexplained up to now. The subcritical onset of STDBC, finally, has
been explored in a recent work by Schatz et al. (1995). Another important feature,
namely the surface depression in the centre of the hexagonal cell, was confirmed by
Cerisier et al. (1984). Further we should mention the experiments regarding the pattern
selection in small-aspect-ratio cells Γ ∼ 1 (Koschmieder & Prahl 1990; Ondarçuhu et
al. 1993; Mindlin et al. 1994). These experiments reveal patterns in the form of rolls,
circular segments, triangular and square cells. Their selection, however, is forced by
the influence of the lateral walls.

For the moderately supercritical range, i.e. ε ∼ 1, Koschmieder (1991) and Kosch-
mieder & Switzer (1992) demonstrated that the decrease of the size of the hexagons
with increase of ε is an intrinsic feature of STDBC in the range ε 6 1. At higher
supercriticality ε this decrease is reversed to a monotonic increase of the cell size
(Cerisier et al. 1987b) as is also known from RBC. Another topic of interest is
the stability of different planforms in STDBC. Cerisier et al. (1987a) showed that
hexagons lose the competition with rolls at a certain distance from the instability
threshold if the depth of the liquid layer is increased.

To summarize the experimental efforts, we note that most of the experiments
are restricted to hexagonal convection in the immediate vicinity of the instability
threshold. Pattern selection for small aspect ratios (Γ < 10), which leads partly to
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non-hexagonal planforms, is exclusively determined by the influence of the walls and
gives no information regarding the intrinsic stability of hexagons in extended systems.
At the highest value of ε ∼ 7 achieved for aspect ratios Γ � 10 (Cerisier et al. 1987b),
however, under the condition of a non-controlled gas layer and with perturbation
of the free surface, no indication regarding the existence of a secondary instability
has been found. Caused by the high Prandtl number of 880, hexagons were still the
dominant planform, although their degree of order was reduced.

On the theoretical side, both the absence of reflection symmetry with respect to
the midplane of the layer and the location of the driving force at the free surface
are sources of an increased complexity of STDBC in comparison with RBC. The
linear stability problem, i.e. ε = 0, was explored for the first time by Pearson (1958).
Later, Nield (1964) included the combined effect of surface tension and buoyancy.
The studies of nonlinear STDBC can be grouped into bifurcation analysis based on
amplitude equations (Scanlon & Segel 1967; Cloot & Lebon 1984; Bragard & Lebon
1993; Bestehorn 1993; Parmentier, Regnier & Lebon 1996; Golovin, Nepomnyashchy
& Pismen 1997; Regnier et al. 1997), and into direct numerical simulations of the
governing equations (Bestehorn 1993, 1996; Thess & Orszag 1995; Yu, Jiang & Duh
1996; Dauby & Lebon 1996).

The first attempt to understand weakly nonlinear Bénard convection by means of
bifurcation analysis originates from Scanlon & Segel (1967). Their theory, developed
for the case of infinite Prandtl number, predicts the selection of hexagonal cells in
favour of rolls above the onset of STDBC. The theory of Scanlon & Segel was
refined and partially corrected by Cloot & Lebon (1984), Bragard & Lebon (1993)
and Parmentier et al. (1996). All these works predict the same hierarchy of transitions
with increasing ε starting with hexagons at onset, passing through a mixed state
of hexagons and rolls, and, finally, terminating in a pure roll state. Motivated by
previous experiments of the present authors (Nitschke-Eckert & Thess 1995), these
papers have been generalized by two recent works making allowance for square cells
as a possible solution. Golovin et al. (1997) developed a weakly nonlinear theory for
the complete liquid-gas-Bénard system. They point out that in certain ranges of the
gas-to-liquid depths ratio and the ratio of gas to liquid heat conductivities square
cells do indeed become the stable solution. Regnier et al. (1997) studied the one-layer
system under the influence of buoyancy. They determined the critical ratio between
surface tension and buoyancy as a function of material parameters beyond which
square cells are the preferred planform. Both works stress the importance of both the
heat transfer at the free surface and the liquid viscosity on the selection of square
cells. Their predictions are in qualitative agreement with the results of the present and
foregoing papers, bearing in mind the limited validity of amplitude equation models
for ε > 1.

The first direct numerical simulation of three-dimensional STDBC for medium
aspect ratios (Γ ∼ 30) was performed by Bestehorn (1993). In combination with an
amplitude equation analysis it gives a rather comprehensive picture of the phase and
amplitude instabilities in the weakly supercritical STDBC. However, the code used
was restricted to liquids with an infinite Prandtl number. It was later extended to the
case of finite Prandtl number by inclusion of the toroidal part of the velocity field
(Bestehorn 1996) and serves as one basis of the present paper. In recent works Yu et
al. (1996) and Dauby & Lebon (1996) were able to reproduce with high precision the
planform selection, as it takes place at small aspect ratios in the weakly supercritical
range (see Koschmieder & Prahl 1990). The only simulation that covers the strongly
nonlinear range of STDBC up to ε = 24 in a small-aspect-ratio box (Γ ∼ 1) was
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undertaken by Thess & Orszag (1995). It revealed universal small-scale features of the
temperature field. The latter simulation, performed at a larger aspect ratio, as well as
the simulation of Bestehorn (1993), was able to reproduce the correct wavenumber
dependence on ε in the weakly supercritical range of STDBC.

The foregoing review makes it clear that the range of supercriticality ε, accessible
up to now for large-aspect-ratio STDBC, is smaller than one decade in magnitude,
which is far below the range in RBC. Why is this so? Although the existing codes can
handle in principle aspect ratios up to Γ ∼ 40, the integration time necessary to get
far enough into the nonlinear regime is beyond the capabilities of present computers.
The experimental reason for this narrow ε-range is that the requirement of small layer
depth, necessary for the dominance of surface tension forces over buoyancy, imposes
severe constraints on the maximum of supercriticality, as shown later on.

In the present paper we extend both the measurements of Koschmieder & Big-
gerstaff (1986) and Koschmieder & Switzer (1992) and the existing numerical results
up to ε ∼ 8. This allows us to study in detail the nonlinear evolution of the hexag-
onal pattern. We demonstrate that STDBC is not exhausted with the generation of
hexagonal convection cells. Moreover, the system is capable of developing patterns
with a square symmetry connected with a complex spatio-temporal dynamics. In fact,
STDBC seems to be able to extend our ideas on pattern formation in a way that is
similar to that done recently by the observation of spiral-defect chaos in the RBC
case (Morris et al. 1993).

The paper is organized as follows. In §2 we give a brief introduction to the liquid–
gas Bénard system in the form to which both the experiment and the numerical
simulation refer. We explain the physical mechanism and present the governing
equations. Section 3 contains a detailed description of the approaches by which the
system is analysed in the experiment and in the numerical simulation. In §§4–6 we
present the results in the form of the essential physical features which accompany the
replacement of hexagonal by square convection cells in STDBC. In §4 we deal with
the geometrical aspects of this transition. We study the changes in the composition of
the structure and look into the characteristic lengths of cells of a particular planform.
The influence of the Prandtl number on the transition is illuminated. Section 5 is
devoted to the investigation of the efficiency of cells of different planform in the
transport of heat. Both the Nusselt number and temperature differences inside a cell
are examined. Furthermore, the hysteresis accompanying the transition is studied. In
§6 we report the complex spatio-temporal behaviour connected with the transition.
The results are summarized in §7.

2. The liquid–gas Bénard system
2.1. Governing equations

The system under consideration is sketched in figure 1. A layer of liquid is heated
from below by a horizontal plate which is of a uniform temperature. The free surface
of the liquid is in contact with a gas, cooled by the upper isothermal plate. The
quiescent basic state of the liquid–gas system loses its stability once the temperature
difference between the lower and the upper plate exceeds a critical value. In general,
the instability and the resulting cellular convection is driven by two effects, namely
buoyancy and surface tension. We are interested in situations where the influence
of surface tension dominates buoyancy. Under terrestrial conditions this parameter
range is realized in liquid layers with thickness of the order of 1 mm or less. This
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Figure 1. Schema of the liquid–gas Bénard system: a temperature difference ∆T is maintained
across a two-layer system by isothermal plates. The flow is exclusively driven by the temperature
dependence of surface tension whereby the deflection of the free surface is neglected. The auxilary
variables ∆Tl and ∆Tg represent the average temperature drop in the liquid and in the gas,
respectively. They are defined in §3.1.2. dl and dg are the thicknesses of the respective layers.

type of flow is referred to as surface-tension-driven Bénard convection. The most
important ingredient of STDBC is the fact that the surface tension σ is a function of
the temperature T . We assume the linear relationship

σ = σ0 − γ(T − Tb), (2.1)

where the temperature coefficient of the surface tension γ = −dσ/dT is positive for
the liquid used in the experiments. We briefly recall the basic physical mechanism
of STDBC. If a hot spot is generated at the free surface due to a temperature
fluctuation, the surface tension is lowered according to equation (2.1). As a result,
liquid is pulled radially outward to the region of high surface tension. By continuity,
this causes upflow in the vicinity of the spot. For a sufficiently strong basic temperature
gradient the upwelling hot liquid reinforces the temperature disturbance and gives
rise to instability. Convection occurs. While the weakly nonlinear regime is well
understood, the behaviour in the strongly nonlinear regime of STDBC has not
received comprehensive analysis. The study of this regime is the main purpose of the
present work. We chose the two-layer system as the ‘canonical problem’, rather than
the more familiar one-layer system, since the former is free of any ad-hoc assumptions
about the mechanism of heat transfer at the free surface. We focus on a system in
which the surface deflection caused by convective motion is negligible.

The system defined in figure 1 is governed by the incompressible Navier–Stokes
equation

∂tvi + vi · ∇vi = − 1

ρi
∇pi + νi∆vi, (2.2)

∇ · vi = 0, (2.3)

and by the energy equation

∂tTi + vi · ∇Ti = κi∆Ti (2.4)

for each phase i, where i = l[i = g] refers to the liquid [gas]. Assuming that the liquid
and gas have the thickness dl and dg , respectively, we can formulate the following
boundary and matching conditions. At the bottom z = 0,

vl = 0, Tl = Tt + ∆T . (2.5)

At the free surface z = dl we impose

v
(x)
l = v(x)

g , v
(y)
l = v(y)

g , v
(z)
l = 0, v(z)

g = 0, (2.6)
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Tl = Tg, (2.7)

λl∂zTl = λg∂zTg, (2.8)

ρlνl∂zv
(x)
l − ρgνg∂zv(x)

g = −γ∂xTl, ρlνl∂zv
(y)
l − ρgνg∂zv(y)

g = −γ∂yTl. (2.9)

At the top plate z = dl + dg the conditions are

vg = 0, Tg = Tt. (2.10)

These relations express the no-slip condition and the fixed temperature ((2.5) and
(2.10)) at the heating and cooling plates, and the continuity of velocity (2.6), tem-
perature (2.7), and heat flux (2.8) across the interface. The Marangoni boundary
condition (2.9) is responsible for the motion of the liquid due to non-uniformities
of the temperature. The set of equations and boundary conditions (2.2)–(2.10) rep-
resents a straightforward generalization of the one-layer equations (see e.g. Davis
1987). It describes the velocity, pressure, and temperature fields in both phases as
a function of space and time. The canonical problem contains twelve physical pa-
rameters, namely ρi, νi, κi, λi, γ,∆T , dl, dg, representing the density, kinematic viscosity,
thermal diffusivity, heat conductivity, temperature coefficient of surface tension, tem-
perature difference, liquid thickness, and gas thickness, respectively. Upon introducing
dimensionless variables, these parameters can be grouped into seven non-dimensional
quantities. These are the ‘total’ liquid Marangoni number

Mtot =
γβtotd

2
l

κlνlρl
, (2.11)

where

βtot =
Tb − Tt
dl + dg

=
∆T

dl + dg
, (2.12)

the Prandtl numbers of the liquid and the gas,

Prl =
νl

κl
, P rg =

νg

κg
,

as well as the ratios ρg/ρl , κg/κl , λg/λl , dg/dl . The rest of the paper is devoted to
the construction and analysis of laboratory and numerical models approximating the
canonical problem (2.2)–(2.10).

2.2. Definition of control parameter and Nusselt number in the two-layer-system

To define supercriticality, and the Nusselt number of the liquid layer in the two-
layer system, one can follow two different concepts, because of the existence of two
scales for the temperature drop across the liquid layer: alternatively to the average
temperature difference ∆Tl one is provided with the conductive temperature drop
∆Tcd. These quantities are given by (cf. §3.1.2)

∆Tcd =
Bi

1 + Bi
(Tb − Tt), (2.13)

∆Tl = Tb − Tt −
dg

λg

q

A
(2.14)

where q and A stand for heat flux and the area of the layer. The Biot number Bi is
given by

Bi =
λg dl

λl dg
(2.15)
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(cf. §3.2.3). To correctly interpret our results, the differences between both scales needs
to be recognized. The conductive temperature drop ∆Tcd assumes that both liquid and
gas layers are in conduction, independent of the actual value of ∆T . Therefore, with
the onset of convection in the liquid, ∆Tcd refers to a fictional system. The advantage
of ∆Tcd, however, is the possibility of external control by varying ∆T . Thus, it can
serve as the control parameter for both experiment and simulation. ∆Tl is the actual
average temperature difference across the liquid layer taking liquid convection into
account. The disadvantage of ∆Tl is that it cannot be controlled externally, since
it changes with ∆T . Furthermore, ∆Tl is modified by randomly appearing defects,
which is unfortunate for the simulations of small and medium aspect ratios. For these
reasons we prefer ∆Tcd. Consequently, we define the supercriticality ε as

ε =
∆Tcd − ∆Tc

∆Tc
. (2.16)

The temperature difference ∆Tc required for the onset of convection is the same in
both scales. The Nusselt number is the ratio of the total heat flux q to that transported
by conduction. It again requires the specification of which temperature difference the
conductive heat flux refers to. We employ ∆Tl , i.e. we define

Nu =
q/A

(λl/dl)∆Tl
. (2.17)

This definition is free of the unphysical upper boundary which exists for the alternative
definition

Nu∗ =
q/A

(λl/dl)∆Tcd
(2.18)

frequently used in the numerical literature. To demonstrate this we assume for
simplicity that the heat flux in the gas is purely conductive. The total heat flux q
going through the two-layer system is then given by q = λgA(∆T −∆Tl)/dg . Inserting
q into (2.18) yields with use of (2.13) Nu∗ = (1+Bi)(1−∆Tl/∆T ). Thus, Nu∗ < 1+Bi
(Boeck & Thess 1997). However, to allow the comparison of our results with other
works we translate them in parallel into Nu∗ if required.

3. Methods
3.1. The experiment

3.1.1. Set-up and parameters

A sketch of the apparatus is shown in figure 2(a). The liquid bottom consists of a
polished silicon crystal wafer which is 12.5 cm in diameter and 0.63 mm thick. This
wafer is inserted up to a depth of 0.7 mm into a 5 cm thick copper block with a
diameter of 17.5 cm. A 2 cm thick aluminium disk of the same diameter is pressed
from below against the copper block. The disk contains, in narrow windings, 4.0 m
of a thermocoax cable (Philips). To minimize lateral heat losses the copper block is
placed in a vacuum. Furthermore, the outer parts of the chamber are furnished with
an additional thermal insulation. The liquid layer is confined by an inner Plexiglas
ring (figure 2b). The meniscus at this ring is avoided by filling it to its total height.
The space between the inner and the outer Plexiglas ring contains the same liquid
to minimize lateral temperature gradients. Before filling, the apparatus is carefully
levelled. The liquid is a 10cS silicone oil (NM 10, Hüls AG) with Pr = 100 at
T = 25◦C. Its parameters are summarized in table 1. The liquid layer is closed from
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Figure 2. Cross-section of the experimental apparatus, shown to scale. (a) The complete experimental
container (axisymmetric). (b) Embedding of the liquid and air layers in the container. Lateral close-up
of the liquid layer, location of the Plexiglas rings and lead-in of the thermoelement. The vertical
size of the sapphire window, silicon wafer and liquid and gas layers is enlarged by a factor of 4 in
both figures, to indicate their position inside the container.

above by a transparent sapphire disc, 12.0 cm in diameter and 0.30 cm thick, placed
on the outer Plexiglas ring. Sapphire is used because of its high thermal conductivity.
The air layer, formed by the difference in height between the inner and outer ring, has
a thickness 0.30 mm 6 dg 6 0.55 mm. Since both the sapphire disc and silicon wafer
are levelled to 8 in 105, the inhomogeneity in dg is smaller than 15 µm. This value may
be partly exceeded in the immediate vicinity of the wall due to non-homogeneous
pinning of the meniscus (cf. §6). Geometric and material parameters of the air gap
and the sapphire disc are given in table 1.
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Quantity Symbol Value at 25◦C

Temperature coefficient of γ 5.9× 10−5 N m−1 K−1

surface tension
Liquid kinematic viscosity ν 0.10× 10−4 m2 s−1

Liquid density ρ 940.0 kg m−3

Liquid thermal diffusivity κ 0.00103× 10−4 m2 s−1

Liquid thermal expansion α 0.0011 K−1

Liquid thermal conductivity λl 0.134 W m−1 K−1

Gas thermal conductivity λg 0.0261 W m−1 K−1 (air)
Sapphire thermal conductivity λs 41.9 W m−1 K−1

Liquid layer thickness dl (1.40–1.45)× 10−3 m
Gas layer thickness dg (0.30–0.55)× 10−3 m
Sapphire disc thickness ds 2.99× 10−3 m

Table 1. Fluid and material parameter values

In contrast to the simulation where there is no buoyancy, the experiments take place
at non-vanishing Rayleigh number R = αg∆Tcdd

3
l /νκ. To quantify the ratio between

both the driving forces of convection we introduce the parameter φ = M/R =
γ/(ραgd2

l ) where M denotes the liquid Marangoni number (3.16). Thus, for a given
value dl , φ remains constant independent of Tb−Tt. The liquid layer thicknesses used
yield φ ≈ 3 which guarantees the dominance of surface tension over buoyancy forces.
The radius r of the inner Plexiglas ring containing the liquid layer varies between
40.4 and 45.2 mm. The aspect ratio Γ = 2r/dl is thus 56 6 Γ 6 64. The horizontal
relaxation time τh = r2/κ amounts to approximately 5 hours. The Biot number Bi
(cf. equation (2.15)), governing that part of the temperature difference Tb−Tw which
occurs across the liquid layer, is 0.5 6 Bi 6 1.0.

By means of a special cooling device (Koschmieder & Pallas 1974) water of
temperature 18.0◦C is supplied to the centre of the sapphire-disc, from where it
flows radially outwards, thereby ensuring axisymmetric cooling. The cooling water,
pumped with a flow rate of 95 l h−1, is provided from a 0.2 m3 thermally insulated
tank. To dampen out fluctuations, its temperature is regulated by a heat exchanger.
This heat exchanger is fed by a refrigerating thermostat with a temperature stability
of ±0.01 K. The temperatures of the silicon crystal, sapphire window and the cooling
water at the inlet and outlet, respectively, are measured with encapsulated quartz
crystals. They have a diameter of 1.8 mm and have a highly linear dependence of the
resonance frequency on temperature. Temperature differences inside the liquid layer
are measured with thermoelements (see §3.1.2). The temperature of the liquid bottom
Tb is controlled with a regulating loop (±0.005 K) and increased automatically in a
quasi-stationary manner at a rate of 0.08 K h−1. The effective rate of increase of ∆Tcd
is, according to equation (2.13), once more, smaller by the factor Bi/(1 + Bi) which
varies between 2 and 3. The typical duration of an experimental run, till ε = 8 is
reached, is of the order of 350 h. Before visualization of the pattern, requiring a quick
removal of the cooling device, the temperature of the liquid bottom is kept constant
for one horizontal relaxation time τh. In table 2 we list all physical quantities which
are directly accessible to measurement.

We finish this section with a general remark on the present Bénard system. On the
one hand, it offers the advantage that the probability of surface contamination, from
the adjacent air layer is low, due to the low surface tension of the oil used and the
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Quantity Description

Tb Temperature at the liquid bottom
Tw Temperature at the top of the sapphire disc
Tin Temperature of the cooling water at inlet
Tout Temperature of the cooling water at outlet
∆TTE Temperature differences in the fluid layers
U Voltage drop over the thermocoax cable
I Current intensity
V̇ Flow rate of the cooling water

G(x, y) Shadowgraph-intensity distribution

Table 2. Quantities directly measurable in the experiment

small volume of the air gap. Under certain preconditions, justified by the theory and
explained below, the system can be assumed to be a one-layer system and can thus be
considered as the simplest system for studying STDBC. On the other hand, the range
of supercriticality accessible in this system is far below that range manageable at
present in RBC. This is due to the fact that the requirement for dominance of surface
tension over buoyancy, expressed by the relation φ > 1, demands a small liquid
thickness. The critical temperature difference across the liquid layer ∆Tc, necessary
for onset of convection, is proportional to the ratio between the Marangoni number
and the liquid layer thickness dl . Small values of dl cause higher ∆Tc. We cannot
reduce the thickness of the air gap below 0.25 mm, because this would cause a
spontaneous wetting of the sapphire by the liquid at higher temperature gradients.
Consequently, a significant part of the available temperature difference Tb−Tw is lost
due to the poor heat conductivity of the air gap. There is also a maximum Tb − Tw ,
up to which controlled experiments can be performed. This limitation is set by the
small, but non-zero, volatility of the oil used.

3.1.2. Temperature measurements and Nusselt number determination

To describe our experiment in terms of the non-dimensional quantities ε and Nu
we have to determine ∆Tcd, q and ∆Tl from the primary variables, listed in table 2.
The measured temperature difference Tb − Tw across the system is composed of the
temperature differences across the particular layers

Tb − Tw = ∆Tl + ∆Tg + ∆Ts, (3.1)

as defined in figure 1. The indices l, g and s stand for liquid, gas and sapphire layer.
We recall that the control parameter of the problem is (cf. §2)

∆T = ∆Tl + ∆Tg. (3.2)

This quantity can precisely be determined from the experiment by using the measured
heat flux q. From the continuity of the heat fluxes it follows that

q = ql = qg = qs (3.3)

where

qs

A
=
λs

ds
∆Ts. (3.4)
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A stands for the area of the liquid layer. Using (3.1)–(3.4) we find that

∆T = Tb − Tw −
ds

λs

q

A
. (3.5)

The conductive temperature drop ∆Tcd is then obtained from equations (3.1)–(3.5)
under the assumption of purely conductive heat fluxes as

∆Tcd =
Bi

1 + Bi+ (λg/dg)(ds/λs)
(Tb − Tw). (3.6)

We define the temperature difference ∆Tl via

∆Tl = ∆T − dg

λg

q

A
= Tb − Tw −

(
ds

λs
+
dg

λg

)
q

A
. (3.7)

Let us address the question of the usefulness of definition (3.7). We consider

qg

A
= 〈ρgcp,gv(z)

g Tg〉+
λg

dg
∆Tg (3.8)

as an approximate representation of the heat flux in the gas gap, where cp stands
for the heat capacity. Using equations (3.2), (3.7) and (3.8) we find for the actual
temperature difference ∆T ∗l across the liquid

∆T ∗l = ∆Tl +
dg

λg
〈ρgcp,gv(z)

g Tg〉.

This means that our auxiliary variable ∆Tl is equal to ∆T ∗l provided that the
convection in the air gap is negligible. The gas-gap convection is studied numerically
in §3.2.2 and analytically in Eckert (1997). Both approaches show that air convection
plays a marginal role in our parameter range. Thus, ∆Tl is nearly equal to ∆T ∗l . The
Biot number modelling the heat transfer at the free surface is identical to equation
(2.15) under these conditions.

The heat flux q is determined from the electric power P dissipated by the heater
(figure 2a). P is given by the voltage drop U over the resistor Rh of the thermocoax
cable and the current intensity I in the heater circuit. The power input P to the heater
is divided into a part flowing through the liquid layer and a second part flowing
through the insulated sidewalls, through the buffer liquid between the Plexiglas rings
and through the Plexiglas rings themselves. In the purely conductive state of the
liquid layer we find

P =
λl

dl
A ∆Tcd + c (Tb − Tw). (3.9)

The quantity c comprises the effective thermal conductance of the sidewalls and the
outer liquid and rings, respectively, and is determined from P and Tb − Tw , in the
steady state, via a linear least-squares fit from equation (3.9) in each measurement. If
c is known the heat flux q is given by q = P − c (Tb − Tw). A question is in order
regarding the constancy of c at the higher heat fluxes in the convective regime. The
only heat transfer process subsumed under c which deviates slightly from linearity
is the weak convection of the buffer liquid. The gap thickness between the rings
is kept sufficiently small to suppress additional pattern formation. The absence of
polygonal cells was verified in parallel by visualizing the pattern. The main source of
the convection in the buffer liquid are small differences in surface tension due to a
lateral temperature gradient. Measurements of this gradient by thermocouples show
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that the heat flux carried by this convection is at maximum 2% of the heat flux
transported by the layer under study.

We briefly discuss the errors in the determination of ε and Nu. Tb − Tw and A
can be determined with an uncertainty lower than ±0.04 K and 0.1%. According to
(2.16) and (3.6) (ε − 1) equals the ratio of (Tb − Tw) to that at onset of convection
(Tb − Tw)c. (Tb − Tw)c is obtained from the Schmidt–Milverton plot (q vs. Tb − Tw)
with an accuracy of 3%. The total error in ε amounts to 4%. The accuracy of the
heat conductivities is about 1%. The error with the highest weight results from the
uncertainty in the measurement of the thickness of the air gap dg . It is determined
as the difference between the heights of the outer Plexiglas ring and the liquid
layer, which are both measured with a micrometer screw (uncertainty ±0.01 mm).
Depending on the thickness of the air gap, the relative error lies between 2% and
3.3%. The heat flux q is systematically overestimated on average by 1% due to
neglecting to measure the weak convection in the buffer liquid. The total error in q
amounts to 3–4%. According to equations (3.6) and (3.7) the average errors in ∆Tcd
and ∆Tl are then 5% and 12%, respectively. Consequently, the cumulative error in
Nu is on average 17%.

To measure local temperature differences single thermoelements are inserted into
the liquid layer. For one thermoelement we use two pairs of 0.08 mm copper and
constantan wires. Via a special welding technique we produce very fine welding points
with sizes of the order of the thickness of the wire. One of these welding points is
placed either onto the silicon wafer or onto the sapphire window (figure 2b). The
other one is inserted from the bottom and positioned at least 0.05 mm below the
liquid surface. The liquid surface is kept free of disturbances. The height of the
upper welding point is determined with a micrometer screw. The thermoelements are
connected to a 6.5-digit voltmeter.

3.1.3. Pattern visualization and Fourier-space-representation

For the visualization of the convective pattern we use a standard shadowgraph
technique (Merzkirch 1974). A point-like light source, produced by a projector in-
cluding a heat filter, is projected onto an achromat of 15 cm in diameter. The beams
are made parallel and turned by a large beam splitter, in order that they fall onto the
liquid layer at an angle of 90◦ relative to the liquid bottom. The beams are reflected
at the polished silicon wafer, and pass again through the beam splitter to produce a
two-dimensional grey value distribution G(x, y) on a screen. Here it is photographed
by a CCD camera switched to a frame grabber card (Matrox, 768× 512× 8 bit).

For the presentation of the results it is useful to switch between shadowgraph
images in physical space and their representation in Fourier space. From the digitized
grey value distribution we calculate via two-dimensional-Fourier transformation the
power spectral density P (k, ϕ), where k and ϕ denote the polar coordinates in the two-
dimensional wavenumber space. An appropriate tool for characterizing changes in
the orientation of cell domains is the azimuthal distribution function Q(ϕ). Following
Gollub & McCarriar (1982) we define

Q(ϕ) =
1

W

∫ 〈k〉+∆k
〈k〉−∆k

kP (k, ϕ) dk, (3.10)

where W is a normalization factor. The domain of radial integration is restricted to an
interval [〈k〉 − ∆k, 〈k〉+ ∆k], where 〈k〉 is the average wavenumber and ∆k = 0.15〈k〉.
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We introduce 〈k〉 as

〈k〉 =

∫ ∞
0

∫ 2π

0

k2P (k, ϕ) dkdϕ

/∫ ∞
0

∫ 2π

0

kP (k, ϕ) dkdϕ. (3.11)

Before starting the integration of equations (3.10) and (3.11), several preprocessing
steps are undertaken. As shown later, STDBC becomes increasingly complex with
increasing ε since cells of different planform appear which still partly deviate from the
equilateral form. To determine Q(ϕ) and 〈k〉 of cells of a given planform we use special
graphics software by which we separate domains of different symmetries. We do this
by cutting domains of equal planform with a rectangular window. The isolated cell
domains are multiplied by a Parzen window and brought together as a new picture,
which contains only islands of cells with equal symmetry. In the hexagonal regime of
convection the window lies entirely in the box; by this we exclude the sightly larger,
incomplete rim cells. Finally, this new, separated picture serves as input quantity
for equations (3.10) and (3.11). Both integrals are computed using bicubic spline
interpolation. Higher harmonics are filtered out by a binomial filter.

3.2. Numerical simulation

3.2.1. Outline of the numerical strategy

In principle, there is no conceptual or technical difficulty in performing a direct
numerical simulation of the two-layer equations (2.2)–(2.4) by extending previous nu-
merical work for the one-layer equations (Bestehorn 1993, 1996; Thess & Orszag 1995).
However, it turns out that such an approach is not necessary in the parameter range
covered by our experiment. More precisely, we have performed a two-dimensional
reference simulation of the full two-layer equations (2.2)–(2.4), demonstrating that the
convection of the air layer has little bearing on the motion of the silicone oil. Below
we shall show how the results of the reference simulation can be used to convert the
two-layer problem into a one-layer problem with an effective Biot number that can
be evaluated systematically.

3.2.2. Reference simulation of the two-layer equations in two dimensions

To study the influence of the motion of the air layer we first solve the complete set
of equations (2.2)–(2.4) in two spatial dimensions. For the numerical integration we
apply a simple explicit Euler method. The solutions converge rather fast to stationary
patterns after about one vertical heat diffusion time in the range up to Mtot = 1000.
In the lateral direction we use periodic boundary conditions. The lateral dimension
was chosen in such a way that a pair of rolls with wavenumber k = 2 fits in. We
insert the parameters Prg = 0.6, Prl = 100.0, κg/κl = 270.0, λg/λl = 0.19, dg/dl = 1/3,
valid for 10 cS silicone oil and air at room temperature, to allow direct comparison
with the experiment. Figure 3 shows the contour lines of the stream function and
the temperature field at two different values of Mtot. We find that the isotherms in
the air layer are nearly non-deformed, i.e. only weakly influenced by the convection.
To evaluate quantitatively the importance of convective heat transfer we determine
numerically the Nusselt numbers

Nul =
〈∂zTl〉
〈Ts〉 − Tb

, Nug =
〈∂zTg〉
Tt − 〈Ts〉

of the liquid and gas, respectively. Here 〈·〉 = (1/L)
∫ L

0
dx · is the average over

the periodicity length L evaluated at the free surface and 〈Ts〉 is the mean surface
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(a)

(b)

Figure 3. Numerical solutions of the full two-layer system in two spatial dimensions: (a) ε = 0.7
and (b) ε = 3.0. Left: Stream function, solid lines denote vortices turning clockwise, dotted
counter-clockwise. The motion in the air layer is induced by the boundary condition at the
interface. Right: isotherms. In the air gap, the isotherms are nearly parallel and therefore virtually
not influenced by convection, even at moderate ε.

Mtot Nul Nug Figure

360 1.170 1.000 3(a)
850 1.623 1.000 3(b)

Table 3. Two-dimensional simulation of the two-layer Bénard system: Nusselt numbers for the
liquid and the gas layers at different Mtot. Note that the Nusselt number of the air is not affected
by the convection in the liquid layer.

temperature. Table 3 summarizes the values of Nul and Nug for two different values
of the total Marangoni number. The main result is that the Nusselt number of the air
layer is nearly independent of the convection in the liquid layer. We find deviations
from the conductive state of the air which are less than 0.01% for Mtot 6 1000. This
is below our numerical accuracy. Thus, our reference simulation demonstrates that
the assumption of a static air layer is a very good approximation in the parameter
range of the experiment.

3.2.3. Formulation of the effective one-layer equations in three dimensions

As demonstrated above, STDBC can be described in the parameter range of the
experiment by the motion of the liquid alone. The air is considered at rest and the
thermal properties of the air layer are contained in an extra boundary condition for
the temperature at the free surface of the liquid. A reference value is the temperature
TI of the free surface without convection. Using equation (2.13) TI is given by

TI = Tb − ∆Tcd = Tb −
1

1 + λldg/λgdl
(Tb − Tt). (3.12)

The temperature and length are now scaled by Ti = T ′i /(T
′
b − T ′I) and z = z′/dl ,

respectively, where the prime refers to the variable in physical units. Separation of
the linear profile introduces the new variable Θ:

Tl = Tb − (Tb − TI )z +Θ(x, y, z, t). (3.13)

The boundary condition on the bottom (2.5) immediately yields

Θ = 0 for z = 0. (3.14)
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At the free surface, the second terms on the right-hand sides of (2.9) can be neglected
since ρlνl � ρgνg for an oil/air system. Using (2.3) we get

∂2
z v

(z)
l = M(∂2

x + ∂2
y)Θ for z = 1 (3.15)

with the dimensionless parameter

M =
γ(T ′b − T ′I )dl

ρlνlκl
(3.16)

usually denoted as the Marangoni number, related to Mtot by

M = Mtot

λg

λl

1 + dl/dg

1 + λgdl/λldg
. (3.17)

To derive the thermal boundary condition at the surface we combine (2.7)–(2.8)
with (3.13) to find

∂zΘ =
λg

λl
∂zTg|z=1 + (Tb − TI ) (3.18)

which involves the temperature of the gas layer. Since we need not pay attention to
the convection in the gas layer, the continuity of the temperature at the interface
allows us to express Tg with the value of Θ along the interface. We obtain a non-local
boundary condition of the general form

∂zΘ(x, y, z)|z=1 = λg/λl

∫ Ly

0

∫ Lx

0

dx′dy′G(x− x′)Θ(x′, y′, 1) (3.19)

with the kernel G resulting from inversion of the heat equation. Physically the non-
locality comes from the coupling of the interface to the air which connects all points
of the interface instantaneously via heat diffusion. To avoid non-local expressions one
usually truncates the gradient expansion of (3.19) after the leading term and finds the
condition

∂zΘ = −BiΘ (3.20)

with Bi = λgdl/λldg as the Biot number, which is a good approximation for dg/dl � 1.
If dg/dl = O(1), which is the case for our experiments as well as for the numerical
simulations of the previous paragraph, an approximation of (3.19) leads to a relation
like (3.20) with a slightly different effective Biot number, in the following denoted as
Bieff .

From our reference simulation we may estimate Bieff in the following way: knowl-
edge of the temperature at the interface allows us to match the exact condition (3.18)
onto the approximation (3.20). Projecting the right-hand side of (3.18) onto Θ, we
obtain

Bieff = −

∫ L

0

dx (λg/λl∂zTg|z=1 + Tb − TI )Θ|z=1∫ L

0

dxΘ2|z=1

. (3.21)

Table 4 shows that Bieff decreases slightly with increasing M. This is due to the
growing contribution to (3.21) from modes with zero wavenumber. Inspection of
the gradient expansion of (3.19) shows that temperature distributions with larger
wavenumbers contribute more strongly to an effective Biot number.

If not otherwise indicated, the effective Biot number of the simulation equals the
Biot number of the experiment (cf. (2.15)). In the following numerical treatment it is
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Figure Mtot ε Bieff

3(a) 360 0.7 0.63
3(b) 850 3.0 0.60

Table 4. Effective Biot number as function of ε

of advantage to use the incompressibility condition (2.3). The solenoidal velocity field
of the liquid can be separated into its toroidal and poloidal parts, according to

v(r, t) = ∇× {φ(r, t)z0}+ ∇× ∇× {ψ(r, t)z0} (3.22)

where z0 denotes the unit vector in the vertical direction. The scalar field φ is a stream
function that describes the horizontal mean flow. Forming the curl and twice the curl
of the Navier–Stokes equations we obtain{

∆− 1

Pr
∂t

}
∆∆2ψ = − 1

Pr
{∇× ∇× (v · ∇v)}z, (3.23a){

∆− 1

Pr
∂t

}
∆2φ = − 1

Pr
{∇× (v · ∇v)}z, (3.23b)

and from (2.4)

{∆− ∂t}Θ = ∆2ψ + v · ∇Θ. (3.24)

Here we suppressed the suffix i since all quantities refer to the liquid layer. From
(3.23b) it is obvious that the mean flow generation is proportional to 1/Pr and that
the mean flow vanishes for an infinite Prandtl number.

For the boundary conditions on the bottom, z = 0, we have

Θ = φ = ψ = ∂zψ = 0. (3.25)

On the top (z = 1) we find that

ψ = 0, ∂zφ = 0, ∂2
zψ = −MΘ, ∂zΘ = −BieffΘ (3.26)

To solve the fully nonlinear problem constituted by (3.23)–(3.26), we use the algo-
rithm described in Bestehorn (1996). In the two lateral directions periodic boundary
conditions are assumed. The parameter spaces accessible to experiment and simula-
tion do not completely overlap. In comparison to other disciplines, such as turbulence
research, the gap is rather small. So, the same ε-values as in the experiment can be
achieved if a lower Prandtl number is used in the simulation. At even smaller Prandtl
numbers (e.g. Pr = 40) the maximum ε-value of the simulation already exceeds that
of the experiment.

4. The hexagon–square transition
4.1. Phenomenology

The main result of the present work is the identification of square cells as a stable mode
of STDBC, both in experiment and numerical simulation. A first glimpse of the pattern
formed in experiment and simulation is given in figure 4 which is the shadowgraph
intensity distribution in part of the experimental box at ε = 7.0 (Pr = 100) together
with the surface temperature field as obtained from numerical simulations at ε = 3.0
(Pr = 50). The figure reflects the robustness of the phenomenon and the distinct



Square cells in surface-tension-driven Bénard convection 171

(a) (b)

Figure 4. Robustness of square cells in Bénard convection: (a) experiment (ε = 7.0, Pr = 100,
Γ = 64), (b) numerical simulation (ε = 3.0, Pr = 50, Γ = 32). The high structural similarity of both
patterns includes the defect type: a dislocation is present in both pictures, and located at nearly the
same place (see arrow in a). The shadowgraph image in (a) is treated with a nonlinear pseudo-filter;
(b) shows the isotherms at the surface.

structural similarity in the pattern formation in experiment and simulation. The latter
manifests itself also in the presence of the same type of defect, namely a dislocation in
a square lattice indicated in figure 4(a). Square patterns appear in both experiments
and simulations as an intrinsic, i.e. stable and reproducible, planform of STDBC, if
ε is increased beyond a certain threshold εs. With lowering of ε below εsubs < εs they
disappear. The values of εs and εsubs , detailed below, differ, which is due to the presence
of a hysteresis (cf. §5.3).

Figure 5, in which we plot shadowgraph intensity fields together with the corre-
sponding orientational distribution functions in Fourier space, summarizes the most
important features of the nonlinear evolution of hexagonal cells towards square cells.
Starting at Tb − Tw = 0 we increase the temperature difference across the system
in a quasi-stationary manner. With the onset of the primary instability (ε = 0), the
liquid layer is tessellated by well-ordered hexagonal cells. The hexagonal pattern can
be preserved up to ε ∼ 3.2 if the noise level is sufficiently low. Figure 5(a) displays an
example for ε = 2.4. It shows two large regions of hexagons having a slightly different
orientation. They are linked by four pentagon-heptagon defects, lined up in the centre
of the container. Looking at the orientational distribution function Q(ϕ), we observe
six peaks that are typical of the hexagonal symmetry. They are partly widened due
to the weak orientational non-uniformity introduced by the defects.

At a certain ε (see §4.2) the number of ‘free’ pentagons which are not bounded in a
pentagon-heptagon defect starts to increase. The pentagon of this defect seems to act
as a nucleus for the generation of the ‘free’ pentagons. Typically, these pentagons are
organized in ‘double’ lines, which we henceforth call ‘penta-lines’. We illustrate this
step in figure 6(a). The relevance of these aggregates is also supported by numerical
simulation (see e.g. figure 17b in §5.3). The place of their generation seems to be
chosen at random. Medium aspect ratios favour places in the vicinity of the rim.
From there the penta-lines are directed radially inwards towards the centre of the
box. At larger aspect ratios the penta-lines are also generated in the central parts of
the container. The mechanism leading to the formation of these kind of pentagons
seems to be generic. It triggers the entire transformation process from hexagons to
squares. Two adjacent cell knots of a hexagonal cell move towards each other along
one of the three lines of symmetry. They merge and one cell edge vanishes. The
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Figure 5. The hexagon–square transition in STDBC in the experiment. Shadowgraph pictures at
ε = 2.4 (a), ε = 4.9 (b) and ε = 6.1 (c) together with the corresponding orientational distribution
functions (d–f). (dl = 1.41 mm, dg = 0.26 mm, Γ = 64, Pr = 100).

pentagons so formed are, as a rule, non-equilateral, and orientated with the shortest
edge towards remaining hexagonal cells (cf. figure 6a). On increasing ε, these sides
become shorter and shorter. Consequently, square cells are formed in the interior
of such a penta-line. The two fronts of pentagons tend to spread into hexagonal
domains. This step is sketched in figure 6(b).
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Penta-line

Penta-hepta defect Formation of square cells

(a) (b)

e = 3.8 e = 4.6�

Figure 6. Transformation process from hexagons to squares in the experiment. (a) Formation of
a double line of pentagons (‘penta-line’) which has its origin at the pentagon of the penta-hepta
defect. (b) Undoing of the penta-line and spreading of two fronts of pentagons into hexagonal areas.
In the interior of the original penta-line square cells are formed.

We return to the description of the transition. Figure 5(b) displays an intermediate
stage of the pattern in its evolution to a square planform. The process sketched above
can occur with different degrees of perfection. Islands of square cells are distributed
between hexagonal domains and separated by fronts of pentagons. The respective
spectrum (figure 5e) is more irregular due to splitting of peaks. The reason is the
partial alignment of square cells along one of the lines of symmetry of the former or
the still existing hexagonal domains.

The shadowgraph picture of the final stage is shown in figure 5(c). It is characterized
by square cells concentrated in domains of different extension and orientation. Our
experiment demonstrates that for sufficiently large ε the competition between hexagons
and squares is resolved in favour of the latter (cf. figure 5f). However, the hexagons
are not completely expelled by square domains but, to a small extent, persist with
a remarkable degree of stability. This fact is both a consequence of the circular
geometry and of the rather high Prandtl number as discussed in §4.4. The existence of
a perfectly square pattern in the numerical simulation for a periodic square domain
leaves little doubt that an experiment in a square box with a liquid of Pr ∼ 50 or
lower would provide a pattern of square domains without intermediate hexagons.

4.2. Composition of the convective pattern

To quantify the composition of the pattern as a function of ε we introduce relative
cell numbers pi = Ni/N, defined as the ratio between the number of cells Ni of a
given planform (hexagons (i = 6), pentagons (i = 5), squares (i = 4)) and the number
of complete cells N. We exclude cells which are situated along the perimeter of the
container. The behaviour of pi at Pr = 100 with an aspect ratio Γ = 64 is shown in
figure 7.

At the onset of convection the pattern comprises approximately 350 cells which are
almost completely hexagonal, i.e. p6 = 0.98. The deviation of p6 from unity is due to
a small number of heptagonal and pentagonal cells, which are unified in penta-hepta
defects. With increasing ε we do not find a monotonic increase of this kind of defect.
Up to ε ∼ 1 the hexagon percentage p6 can be kept as high as p6 = 0.96 ± 0.03
(figure 7a). The fluctuation is due to spontaneous generation and annihilation of
penta-hepta defects. Beyond ε ∼ 2, p6 starts to decrease slowly at the expense of a
growing pentagon number p5 (figure 7b). These pentagons are no longer completely
linked to heptagons but become more and more organized in the penta-lines already
described in §4.1. Beyond ε = 4, p6 decreases drastically. In parallel, we detect a
significant increase in p4. The pentagon number p5 grows, too, but at a slower rate,
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Figure 7. Composition of the Bénard pattern. Fraction of a cell class pi as a function of ε. i = 4, 5, 6
stands for square, pentagonal and hexagonal cells. (dl = 1.41 mm, dg = 0.26 mm, Γ = 64, Pr = 100).

and reaches a maximum at ε ∼ 4.7. Above this value, it again decreases slowly. At
ε > 6.5 the pi-values show minor changes only. An increase of p4 above 55% was not
observed for the aspect ratio under study (Γ = 64).

In spite of many similarities, this result deviates from observation for medium
aspect ratios (Γ = 46) (Nitschke-Eckert & Thess 1995), where p4 = 0.70 could be
realized. The role of pentagons as mediating aggregates of the transition is identical
for all aspect ratios studied. The maximum in the p5-distribution, however, is more
pronounced for the medium than for the large aspect ratio.

From figure 7(a) one can derive a threshold εps for the onset of convection in square
cells. The superscript p indicates that this value originates from the p4-distribution.
We define εps as the point at which the p4-distribution starts to grow systematically.
It is calculated as the intersection between a linear least-squares fit, containing the
data up to p4 = 0.3, and the abscissa. Taking into account all experimental runs for
Γ = 64, we find that

εps = 4.0± 0.5. (4.1)

The error ∆ε = ±0.5 includes the standard deviation and the scatter between in-
dependent experimental runs. The measure εps is afflicted with the ambiguity in the
choice of the range and the type of the fit. This uncertainty is removed later on by
introducing a second measure, based on the heat flux measurements, to be discussed
in §5.1. We shall see that the value of εps is close to this second measure.

4.3. Wavenumbers of hexagonal and square cells

On increasing ε, Bénard convection becomes increasingly complex. First, the cellular
pattern can comprise cells of different planform. Second, the cells can deviate from
the equilateral form. The determination of the wavenumber of such a pattern can
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Figure 8. Measured wavenumbers of hexagonal and square cells as a function of ε. kc = 1.60 mm−1

is the wavenumber at the onset of convection. (Γ = 64, dl = 1.41 mm, dg = 0.26 mm, Pr = 100).

be done in both physical and Fourier space. Both approaches are used in this work.
The k-determination based on Fourier transformation, however, is given preference
because this method is easier to formalize. The procedure was described in §3.1.3
where we introduced the average wavenumber 〈k〉, cf. (3.11).

The measured dependence of the integral wavenumber 〈k〉 on ε in a container
with Γ = 64 is shown in figure 8. While previous measurements of the wavenumber
(Cerisier et al. 1987b; Koschmieder & Switzer 1992) were restricted exclusively to the
hexagonal or the hexagonal/pentagonal cell planforms, our experiment permits us to
draw a more complete picture of the wavenumber behaviour at higher values of ε.
The initial increase of the wavenumber in the hexagon regime, d(〈k〉/kc)/dε = 0.18,
or in different notation d〈k〉/dM = 0.0036 at φ = 2.9, is in qualitative agreement
with the work of Koschmieder (1991), Koschmieder & Switzer (1992), who found
dk/dM = 0.0042 for φ = 4.2. Beyond the k-maximum, whose value and location is
a function of φ, the size of the cells increases monotonically with ε. This behaviour
is qualitatively not changed by the appearance of the square cells. The remarkable
feature, however, is the difference in the wavenumber between hexagonal and squares
cells clearly visible in figure 8. On calculating the ratio 〈k4〉/〈k6〉 in the range 4.5 6
ε 6 6.5 for each ε, we obtain on average

〈k4〉/〈k6〉 = 1.08± 0.02. (4.2)

The ε-range was chosen in such a manner that the fractions of hexagons and
squares are comparable and fulfil the condition 0.2 6 pi 6 0.6 (cf. figure 7). Our
experiment demonstrates that square cells posses a wavenumber which is, on average,
8% higher than that of hexagonal cells at the same ε. The ‘thermal expansion
coefficient’ d(〈k〉/kc)/dε is different for both cell types. Using linear least-squares fits
we find

〈k6〉
kc

= −0.055 ε+ 1.161 for 2.0 6 ε 6 6.0, (4.3)
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〈k4〉
kc

= −0.40 ε+ 1.163 for 4.4 6 ε 6 8.0. (4.4)

Obviously, the size of hexagons increases faster than that of square cells. The upper
[lower] boundary of the fit ranges of hexagons [squares] is set by the ε-value at which
the fraction pi of the particular cell class remains less than 0.2.

The measurements of 〈k〉 based on Fourier transformation are supported by mea-
surements in physical space. Assuming regular planforms, the wavenumber is related
to the edge lengths of the hexagonal and square cells, l6 and l4, via

k6 = 4π/3l6, (4.5)

k4 = 2π/l4 (4.6)

(Chandrasekhar 1961). The physical-space equivalent to 〈ki〉(i = 4, 6) is the mean
value 〈li〉 of the corresponding edge-length distribution. These quantities are obtained
from a statistical analysis of the Bénard cells (Thiele & Eckert 1997). For the average

edge-length ratio in the same range 4.5 6 ε 6 6.5 we find 〈l6〉/〈l4〉 = 0.72 ± 0.04.

According to equations (4.6) and (4.5) this translates into 〈k4〉/〈k6〉 = 1.08± 0.05, in
agreement with the results obtained in Fourier space.

The higher wavenumber of square cells is surprising. It partly supports the max-
imum heat transfer hypothesis (Malkus & Veronis 1958) which implies a smaller
wavelength for the selected mode of higher heat transport (Busse 1967). We now
wish to study the wavenumber of the mode with maximum heat transfer by means of
numerical simulation. For this purpose we solve (3.23) and (3.24) on a unit cell of
length Lx, Ly , chosen in such a way that one regular square or hexagon fits in. The
periodicity lengths Lx, Ly thereby determine the wavelength of the pattern and enter
the program as a free parameter – an advantage that cannot be directly realized in
the experiment. To determine the Nusselt number and the periodicity length we use
the following procedure: first we fix the number of lateral mesh points at 16 × 16
for squares and at 32 × 18 for hexagons. The latter is a reasonable approximation
of
√

3/2 which is the lateral aspect ratio of a hexagonal unit cell. Then we integrate
(3.23) and (3.24), using a square or a hexagon as initial condition and a starting value
∆x for the lateral step size between two mesh points. We obtain

Lx = Ly = 16∆x, k4 =
π

8∆x
(squares), (4.7)

and

Lx ≈ (
√

3/2)Ly = 18∆x, k6 =
π

16∆x
(hexagons). (4.8)

The integration is stopped when the absolute change of the Nusselt number is less
than 10−6. Then we vary ∆x until the maximum of the Nusselt number is reached.
In that way we find k4 and k6 maximizing the Nusselt numbers for various values
of the control parameter ε. This relation is shown in figure 9. The behaviour of
the hexagon wavenumber as a function of ε coincides well with the experimental
facts presented above. A rather strong increase for weakly supercritical convection is
followed by a maximum at about ε = 0.7 and a slow decrease of the wavenumber
thereafter. Note that this behaviour is obtained without any buoyancy influence.
Unlike the experiment, the wavenumber kmax4 of the square cell which maximizes the
heat transfer is lower than that of the corresponding hexagonal cell. We find that

kmax4 /kmax6 = 0.96± 0.01 (4.9)

which behaves nearly reciprocally to the result found in the experiment.
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Figure 9. Normalized wavenumbers of the mode of maximum heat transfer as obtained from
numerical simulations of a hexagonal and a square cell, respectively, at φ = 0. The variation of
the periodicity length of one elementary cell gives different values for the wavenumber k. The plot
shows the k-values that maximize the Nusselt number.

4.4. Prandtl number dependence

The possibility of varying material parameters of the liquid over a wide range is
an advantage of the numerical simulation in comparison to the experiment. To
study the dependence of the transition on the Prandtl number we therefore resort to
numerical results. The computations are carried out with medium-aspect-ratio layers
(Lx/dl = Ly/dl ≈ 23) simulated on a grid of 64× 64× 15 points, and to obtain higher
accuracy, on 96 × 96 × 15 points. For all runs a random initial condition is chosen.
The numerical integration is completed with a steady state when the Nusselt number
reaches a constant value.

We find that the Prandtl number plays a key role in regard to the planform selection.
In figure 10 we illustrate this influence by presenting three steady states obtained from
the same random initial condition and the same value of ε but three different Prandtl
numbers. The cells are reconstructed by means of the Wigner–Seitz construction (see
textbooks of solid state physics such as Kittel 1966). For clear illustration, every
planform is characterized by a separate colour. Moving in the direction towards
smaller Prandtl numbers (from a to c) we observe two marked tendencies. Firstly, we
find an increase of the number of square cells. This increase is, secondly, accompanied
by an alignment of the squares in increasingly regular domains (cf. figures 10a and
c). From this behaviour one can argue that the onset of the transition is influenced
by the Prandtl number. In table 5 we demonstrate that on increasing the Prandtl
number a higher ε is required to transform hexagons into squares and vice versa.

On extrapolating the values of table 5 to the Prandtl number of the experiment,
using the fit εsims = 0.28 Pr0.68, we obtain εsims (Pr = 100) = 6.4 ± 0.6. The error given
is caused both by the uncertainty of ±0.1 in the determination of εsims and by the
non-uniqueness of the fit. The value of εsims will be compared to the experimental one
in §5.1.

The reason for the Prandtl number influence lies in the fact that the vertical vorticity
present for any finite Pr is of order 1/Pr. This vorticity seems to act as a ‘lubricant’
and may help to ‘soften’ the structure. Pattern dynamics then may overcome the
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(a) (b) (c)

Figure 10. Influence of the Prandtl number on the pattern selection at ε = 4.0 (Bi = 0.1).
(a) Pr = 10000: p4 = 0.4, p5 = 0.45, p6 = 0.06; (b) Pr = 500: p4 = 0.45, p5 = 0.4, p6 = 0.05;
(c) Pr = 50: p4 = 0.52, p5 = 0.37, p6 = 0.05. The fractions pi do not add up to one since the values
for triangles and heptagons which contribute about 10% are suppressed.

Prandtl
number εsims

35 3.2
40 3.5
45 3.8

Table 5. Onset of the hexagon–square transition in the simulation as a function of the Prandtl
number. The simulation starts at high ε with a perfect square pattern. On decreasing ε the transition
from squares to hexagons occurs at εsims (cf. §5.3).

strong pinning forces of the small-scale structure and can finally lead to the selection
of a perfectly regular (square) pattern. This is impossible in the case of an infinite
Prandtl number where pinning forces fix defects and grain boundaries.

For even smaller values of Pr we leave the stability domain of hexagons. In figure
11 we observe rolls instead of hexagons which coexist near the threshold of the
primary instability with square cells at Pr = 0.5. At this Prandtl number the mean
flow contributes additional dynamics leading to an intrinsic time dependence in the
form of oscillations between both cell types (cf. figure 11a and b). The remarkable fact
coming out of the presented figures is the robustness of the square cells. Although
their regularity is modified they appear in STDBC in the entire range of Prandtl
numbers studied.

We are now able to sketch a quite complete picture regarding pattern selection in
STDBC for different Prandtl numbers. It has been shown in Thess & Bestehorn (1995)
that there is a critical value Prc ∼ 0.23, where the flow direction in the centre of the
cell turns from downflow to upflow. Below Prc inverse hexagons, called g-hexagons
(gas), are selected. At Pr ≈ Prc rolls instead of hexagons are stable near the onset of
convection. If ε is increased, time-dependent states follow. For Pr � Prc `-hexagons
(liquid) are stable which are replaced by squares at larger ε. The transition to a
regular square pattern is mediated by the mean flow and, therefore, directly linked to
a finite Pr. Simulations based on a reduced model (Bestehorn et al. 1993) show that
defects create a mean flow. In turn, this mean flow forces the defects to start moving
and eventually vanishing to leave a perfect square pattern. For Pr → ∞ `-hexagons
are stable near the onset. In the stronger supercritical region irregular patterns occur,
probably due to bistability of hexagons and squares. The mean flow is now zero and
cannot order the pattern into a regular one.
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(a) (b)

Figure 11. Co-existence of squares and rolls (Pr = 0.5, ε = 0.5, Bieff = 0.1). At Pr = O(1) rolls
instead of hexagons are selected. The region of time-stable patterns shrinks and the onset of weak
turbulence already can be found near the threshold. The time dependence is due to the interplay of
two sets of rolls perpendicular to each other (a and b).

5. Heat transport
5.1. Nusselt number

In figure 12(a) we show the primary measured data in physical units, i.e. heat flux q
versus temperature difference Tb − Tw . From these data we can infer, using equation
(3.7), the actual temperature difference ∆Tl across the liquid layer. Finally, combining
(3.7) and (2.17), we calculate Nu, plotted as function of ε in figure 12(b).

Looking at figure 12 one recognizes three different regimes, denoted by 1, 2, and
3, distinguished by different slopes. The extent of these regimes is determined by
applying linear least-squares fits to the central, visually distinguishable parts of each
region, and by defining the transition as the mutual intersection of two linear curves.
Range 1 represents the basic quiescent state. This state loses its stability at (Tb−Tw)c =
3.39 K± 0.06 K (Pr = 100, dl = 1.43 mm, dg = 0.53 mm). This value corresponds to a
critical temperature difference across the liquid layer ∆Tcd = 1.16 K± 0.07 K. (∆Tc =
1.09 K is predicted by linear theory.) Regime 2 covers the range 0 6 ε 6 4.22± 0.18
(3.39 K 6 Tb −Tw 6 17.6± 0.2 K). According to figure 7, hexagons are the dominant
mode of convection in this regime. Regime 3 is characterized by a significantly
increased slope. To understand what happens in this regime we additionally insert
in figure 12(b) the plot of p4 against ε. One clearly recognizes the strong correlation
between the increase of Nusselt number and the rise in the number of square cells.
Figure 12(b) constitutes the first measurement of the Nusselt number in STDBC
which extends beyond Koschmieder’s experimental investigations (Koschmieder &
Biggerstaff 1986). In particular, it provides unambiguous experimental evidence for
the fact that square cells are more efficient in transporting heat than hexagons.

The different average slopes of the heat flux in the particular regimes are listed in
table 6. The behaviour of ∆q/∆(Tb − Tt) in the vicinity of the transition is depicted
in the insert of figure 12(a). The derivative is calculated via central differences taking
into account two neighbouring points on each side. With the appearance of square
cells the slope of q starts to increase. Around Tb − Tt ∼ 19.5 K we observe a weak
maximum which correlates with that of the p5-value. On increasing Tb − Tt further,
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Figure 12. (a) Heat flux q, determined from the measured electric power P (cf. §3.1.2), as a
function of the measured temperature difference Tb − Tw . The insert shows the slope of the heat
flux ∆q/∆(Tb − Tw) in the vicinity of the onset of the hexagon–square transition. (b) The Nusselt
number Nu and the fraction of square cells p4 as a function of ε. (dl = 1.43 mm, dg = 0.53 mm,
Bi = 0.52, Pr = 100, Γ = 56.)

∆q/∆(Tb − Tt) converges to the value characteristic of the regime dominated by
convection in square cells.

The existence of a slope change between regimes 2 and 3 allows the introduction of
a second independent measure εNus for the onset of convection in square cells. Here the
superscript Nu indicates the origin of this value from Nusselt number measurements.
Making use of all measurements performed with Γ = 56 we find

εNus = 4.2± 0.3. (5.1)

The error ∆ε = ±0.3 is composed of two parts ∆1 and ∆2. The first part, ∆1 = ±0.18 is
the standard deviation for the determination of ε (cf. §3.1.2). Although the experiments
are conducted under nearly identical conditions, we note a scatter of ∆2 = ±0.12 in
the onset of the heat flux increase between independent experimental runs, which
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Regime Characterized by
∆q

∆(Tb − Tw)
(W K−1)

1 Heat conduction 0.162
2 Convection in hexagons and pentagons 0.187
3 Squares, hexagons, pentagons 0.202

Table 6. Average slopes of the heat flux in the particular regimes

suggests the existence of a multitude of narrowly spaced dynamical quasi-equilibria.
Depending on the noise level, which remains below the threshold of control in the
experiment, the system seems to be attracted by one of them.

We are now able to compare the different measures used for characterizing the
onset of convection in square cells. In §4.2 we introduced the quantity εps for the
threshold of the systematic increase of the p4-distribution. We learn from figure 12(b)
that εNus and εps describe the same phenomenon in different words. The change in
slope in the heat flux curves can be determined more precisely than the point at
which the p4-distribution starts to rise systematically. Therefore, εNus is preferred and
is henceforth abbreviated as εs.

Let us now ask in what manner the numerical simulation supports the experimental
observations. To demonstrate the higher efficiency of square cells in the transport of
heat without heavy computational effort we solve (3.23), (3.24) for a single regular
cell and vary its periodicity length until the maximum Nusselt number is reached. The
results are shown in figure 13(a). The remarkable point is that the Nusselt numbers
belonging to hexagons and squares cross at a value εx > 0. Below that value, hexagons
transport a higher heat flux, while above it squares possess the larger Nusselt number.
This behaviour remains unchanged if we do not maximize Nu because the Nusselt
number depends only weakly on the wavenumber k. In a large range, including all
experimentally observed wavenumbers, the Nusselt number of a square cell is higher
than that of the hexagonal cell provided that ε > εx. The fact that the square cell
transports more heat at larger ε is an argument in favour of a secondary instability
of hexagons. Clearly, the value of εx cannot be compared to the experimental value
εs. The geometry of the single cell explored in the simulation is entirely determined
by the rim. So, both the hexagon and the square are stable at ε = 0, which is not the
case in the experiment.

Next we compare in figure 13(b) the Nusselt number Nu6, of the single hexagon,
with the Nusselt number Nu of the experiment. Note that the latter quantity is
an average value over at least 250 cells whose planform might differ from that of
a regular hexagon. In parallel we summarize in table 7 the Nusselt numbers at
representative values of ε. We see that in the range 0 6 ε 6 0.5 the Nusselt number
of the experiment agrees nearly exactly with that of the simulation. With growing
numbers of pentagonal cells the Nusselt number of the experiment stays below that of
the simulation. So we find a difference of 10% at ε = 2. The reason for this behaviour
is the transfer of part of the energy fed to the experimental system to the mean flow
generated by the defects. Therefore, the heat flux carried by a cell in the experiment
is on average lower than that of the perfectly hexagonal cell in the simulation.

Finally we compare the experimental value εs with that predicted by the simulation.
In §4.4 we obtained εsims = 6.4±0.6 from extrapolation to Pr = 100. Taking account of
the experimental and numerical uncertainties this value exceeds that of the experiment
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Figure 13. (a) The Nusselt number obtained by numerical simulation of one elementary hexagonal
and square cell, respectively, as a function of ε (Pr = 100, Bieff = 0.52). We show the maximum
Nusselt number with respect to variation of the wavenumber which is adapted by varying the
periodicity length of that cell. (b) Comparison between the Nusselt numbers of simulation (single
hexagon in a) and experiment. The latter curve is identical to that plotted in figure 12(b).

Simulation
Experiment

ε Nu Nu6 Nu4 Nu∗6 Nu∗4

0.25 1.08 1.095 1.087 1.031 1.028
0.50 1.14 1.163 1.165 1.050 1.051
0.75 1.18 1.221 1.233 1.066 1.069
1.00 1.22 1.274 1.291 1.079 1.084
1.25 1.25 1.338 1.339 1.097 1.095
1.50 1.27 1.365 1.392 1.101 1.107
2.00 1.31 1.444 1.481 1.118 1.125
2.50 1.33 1.516 1.563 1.132 1.141
3.00 1.35 1.583 1.642 1.144 1.154
3.50 1.37 1.646 1.721 1.155 1.167

Table 7. Nusselt numbers of experiment and simulation (Bi = Bieff = 0.52). Nui with i = 4, 6 stands
for the Nusselt number of a single square and hexagonal cell, respectively with periodic boundary
conditions. Nu∗ is the modified Nusselt number frequently used in numerical studies of STDBC.
Nu∗ is related to Nu via Nu∗ = (1 + Bi)Nu/(Bi+Nu) (cf. (2.18)).
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by about 30%. The main reason for this difference is the weaker mean flow in the
simulation in comparison to the experiment. Inversion of the Laplacian in (3.23b),
in which the time derivative is set to zero, yields that the mean flow is proportional
to Γ 2/Pr where Γ is the aspect ratio. The modes with the smallest damping in
simulation and experiment are those whose wavelengths are equal to the periodicity
length L = Γsimdl and to the diameter of the experimental cell Γexpdl , respectively.
Consequently, since Γsim 6 Γexp/3, the numerical mean flow is an order of magnitude
smaller than that in the experiment. The mean flow is a necessary ingredient for the
hexagon–square transition as was demonstrated in §4.4. Once a defect, like a penta-
line, is created within a predominantly hexagonal pattern, the mean flow produced
promotes subsequent merging of cell knots in the environment of this aggregate.
Merging of cell knots is now the essential step towards the square planform. Thus,
the stronger mean flow in the experiment can initiate an earlier onset of the transition.
A second reason is the difference in the lateral boundary conditions. In part, the rim
is responsible in the experiment for production and absorption of defects. This fact
in combination with the foregoing one contributes additionally to the difference
in εs. Another reason is that buoyancy has been left out of the simulation. The
interplay between buoyancy and thermocapillarity is a delicate question that is at
present poorly understood. Cerisier et al. (1987a) showed that the rate of hexagon
formation, given random initial conditions (adjusted by stirring at ε > 0), is slowed
down with increasing thickness of the layer, i.e. with increasing Rayleigh number. This
experiment gives an indication that buoyancy leads to a destabilization of hexagons.
This assumption is supported by the bifurcation diagram given by Regnier et al.
(1997). For this reason, we expect a reduction of εsims if the simulation operates at
φ 6= 0 instead of φ = 0.

5.2. Local temperature differences

We address the question of to what extent local temperature differences measured by
thermoelements reflect the slope changes observed in the heat flux. Before tackling this
problem we want to convince the reader that the thermocouples, though introducing
a certain disturbance, exert only a weak influence on the pattern formation. In figure
14 we present a shadowgraph of a liquid layer containing three thermocouples, of
which only one is visible to the naked eye. From this observation we can infer that
pattern selection proceeds largely unaffected by the thermocouples.

Figure 15 shows two data sets taken in different positions inside the system. The
data in figure 15(a) are a measure of the vertical temperature difference between the
liquid bottom and a height of h = 0.87dl . Figure 15(b) represents the temperature
difference across the air layer up to a distance of 0.06dl below the free surface. In
agreement with the heat flux measurements we identify three regimes characterized
by different slopes. Ranges 1 and 2 represent again the pure conductive state and
the regime dominated by convection in hexagonal cells, respectively. The important
feature of both curves is the second change in slope, leading to regime 3. To understand
what happens in 3, one has to investigate in which cell planform the thermoelements
are placed. Tracing its location in the shadowgraph images one finds that in the
initial stage of regime 3 the thermoelement faces a pentagonal cellular environment.
This pentagon soon becomes elongated into a non-regular planform and successively
transformed into a square one.

We can infer from the observed slope changes a changed deformation of the
isotherms. Generally, any increase of the convective heat flux shifts an isotherm in
the region of rising (falling) liquid in the direction of the free surface (liquid bottom).



184 K. Eckert, M. Bestehorn and A. Thess

Figure 14. Shadowgraph image of a liquid layer containing three thermocouples, whose locations
are indicated by arrows. Only one of them (below right) is visible to the naked eye.

If a vertical temperature difference across a certain distance in the upstreaming
liquid experiences a slower growth, as a function of the temperature difference across
the liquid layer (cf. figure 15a), we can conclude that there is a stronger heat flux
transported in this regime. In turn, the averaged temperature difference across the
remaining height of the liquid–air system must increase at the same time (cf. figure
15b). Thus, both curves show that a square cell possesses, in the vicinity of the
free surface, a stronger steepening of the temperature gradient in the region of
upstreaming liquid. This higher efficiency of a square cell for transporting heat is
already anticipated by a non-regular pentagon.

Next we want to clarify the location of the slope changes in the thermoelement
signals relative to the heat flux. In five of six independent runs we find that the break in
the slope occurs in the thermoelement signals at higher ε compared with the heat flux.
This shift can extend up to ∆ε = +0.8. In only one case did we note a parallel onset.
The delay corresponds to the picture of a continuous transformation of hexagonal
into square cells over the intermediate pentagonal planform. The transformation
proceeds in different parts of the container with different speeds.

Thus, the measurements of local temperature difference clearly support the results
of the preceding sections. A comment is required to define the term ‘local’. While
the position of the two thermoelement wires is fixed inside the two-layer system, the
convective pattern is not completely stationary. We are faced with two consequences.
First, upstream and downstream regions can move through the thermoelement. This
would manifest itself in fluctuations of the signal which, indeed, can be observed
in both curves. In parallel, we know that the probability of finding a thermocouple
in regions of the rising liquid soon becomes distinctly higher, because the upflow
occupies more and more of the space of the cell with increasing ε (Thess & Orszag
1995). Second, travelling of cells with different planform through the thermoelement
could cause a misinterpretation of the signals, especially in regime 3. By carefully
studying the cellular environment around the thermoelement we can definitely exclude
this possibility in figure 15.

The numerical simulation enables us to develop a picture of the temperature fields
inside a convection cell. In figure 16 (a, b) (c, d) we show the contour plots of Θ in
a hexagonal and square cell respectively. These plots result from a simulation of a
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Figure 15. Local temperature measurements. (a) The temperature difference ∆TTE in the liquid
layer between the bottom and a height h = 0.87dl . (dl = 1.45 mm, dg = 0.51 mm, Γ = 56, Pr = 100.
Convection sets in at ∆Tc = 1.08 K). (b) Temperature difference ∆TTE between the underside of
the sapphire disc and a point located in the liquid 0.06dl below the surface. ∆TTE is thus nearly the
temperature drop across the air gap. (dl = 1.44 mm, dg = 0.52 mm, Γ = 56, Pr = 100. Convection
sets in at ∆Tc = 1.12 K). The precise location of the thermoelements is illustrated in inserts.

unit cell with periodic boundary conditions (see §4.3). A common property of both
cell types is that the regions where the cold liquid goes down becomes smaller with
increasing ε. Studying one-dimensional plots of Θ(z) at points at the surface where
Θ reaches its maximum (minimum) value, we find a significant asymmetry between
upflow and downflow established for both types of cells. This asymmetry becomes
more pronounced with increasing ε. If we divide the one-dimensional plot of the
points of maximum (minimum) Θ(z) of a hexagon by the corresponding plots of
a square, we see marked deviations between the cell types especially in the region
of downflow. The difference between the maxima and minima at different heights is
stronger for cells with square symmetry.
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(a) (b)

(c) (d)

e = 0.1 e = 3.5

Figure 16. Stationary pattern found from numerical integration of the three-dimensional one-layer
problem. Plotted are the contour lines of the deviation Θ of the temperature from the con-
ductive state near the threshold (left) and far above (right). The values for Θ are 0 (bold),
Θmax/8, Θmax/4, Θmax/2 (solid), and Θmin/8, Θmin/4, Θmin/2 (dashed). (a, b) The lateral aspect ratio

(Lx/Ly) is
√

3 and one hexagon fits exactly into the cell. (c, d) The lateral aspect ratio is 1 which
leads to the formation of a square cell. With increasing ε the colder areas on the surface shrink.
Consequently, the mean interface temperature increases in comparison to the conductive state. This
is an expression of the higher heat flux transferred by the cell.

We finally list in table 8 some typical values for the amplitudes of temperature
perturbation and velocity at the surface. These values are obtained from numerical
simulations with Γ = 23 after averaging over all cells.

5.3. Hysteresis

While many properties of the transition have been understood, we do not know
anything yet about its bifurcation type. To specify whether the hexagons–square
transition is of subcritical or supercritical type we examine the changes occurring in
the system between runs with increasing ε and those with decreasing ε. This is done
both experimentally and numerically.

In the experiment special care is taken to achieve a pattern sparse in defects in the
vicinity of the threshold for the transition. The temperature difference is changed by
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vmax

ε θmax (K) (10−2 m s−1)

1.0 1.0 0.14
2.0 1.7 0.21
3.0 2.6 0.26

Table 8. Maximum values of temperature perturbation and velocity at the free surface at
different ε

the same rate of 0.08 K h−1 during the upward and the downward run, respectively.
On plotting the relative cell numbers in figure 17(a) we find that the number of
squares [hexagons] at the same ε is higher [lower] in the downward run than in the
upward one. This fact is related to a shift of the maximum pentagon number in the
downward run towards lower ε. From the measurement of the Nusselt number, we
find that square cells can be preserved up to ∆ε = −0.4± 0.1 below εs.

Next we ask whether the numerical simulation confirms the hysteresis found in the
experiment. To keep the computation time efficient it is useful to reduce the Prandtl
number from 100 to 40. As shown in §4.4 this can be done without loss of generality.
The hysteresis loop obtained from simulation is shown in figure 17(b). Starting with
a regular square pattern at large ε we find the transition to hexagons to occur at
εs = 3.5. This is accompanied by a jump in the Nusselt number. In the reverse
direction the hexagons become unstable to square cells at ε = 4.0. The hysteresis
extends to ∆ε = −0.5± 0.1 which agrees well with the value found in the experiment.
From the fact that the hexagon–square transition involves hysteresis we can conclude
its subcritical nature. Within the analogy to first-order phase transition the pentagon
plays the role of a crystallization nucleus.

6. Time dependence
It is natural to ask whether the nearly stationary state, which is typical of the

hexagonal pattern formed after the primary instability, is maintained in the system
when it undergoes the secondary instability. In order to answer this question we have
conducted a long-time experiment at ε = 4.8 covering more than 60 units of the
horizontal diffusion time τh which corresponds to 16 days of real time. In figure 18
we plot six shadowgraph images taken at intervals of 24 hours (a–c) and 2 hours
(d–f) or equivalently 4.2 and 0.4 units of τh. Figure 18 gives a vivid impression of
the time dependence in the transitional region, and in particular of the persistent
irregularity on two different temporal scales and a large spatial scale. As an example
of the processes taking place on a large temporal scale (figure 18, left) we turn to
the transformations occurring at the left upper part of the container (see arrow). In
figure 18(a) one recognizes a domain of well-ordered hexagonal cells. In figure 18(b)
a larger number of these hexagons already have been converted into pentagons. The
process advances, as seen in figure 18(c). Only a small number of hexagons survive
in the selected area. The scene is dominated by pentagons and squares. A reversal of
this transformation process can be observed in other areas. The behaviour found on a
large time scale is encountered in a similar manner on a short time scale. Let us focus
on the right lower part of figure 18(d). One sees a fairly extended hexagonal domain.
In the course of time (figure 18e and f) it becomes more and more intersected by
square domains which are surrounded by chains of pentagons.
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Figure 17. Hysteresis. (a) Fraction of hexagons p6 and squares p4, respectively, as a function
of growing/falling ε as observed in the experiment. (b) Hysteresis loop at Pr = 40 as obtained
from simulation. Coming from large ε with an almost regular square pattern, the Nusselt number
(Nu∗) clearly jumps at about ε = 3.5 to a lower value typical of a hexagonal configuration. If ε is
increased, the number of pentagons arranged in the penta-lines increases and another jump can be
seen at ε = 4 after which the structure is again dominated by squares. The loop is not completely
closed since small dislocations remain stable, probably due to pinning effects of the periodic lateral
boundary conditions.

In figure 19 we plot the temporal evolution of the angular displacement of the three
(two) main peaks in wavenumber space belonging to subsections of the patterns that
contain only hexagons (squares). We get these quantities by applying a procedure
which was described in §3.1.3. Since the hexagonal and the square part of the pattern,
respectively, are built up of domains of different orientation, the spectrum can contain
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(a) (d)

(b) (e)

(c) ( f )

t = 292.3 h t = 341.3 h

t = 316.3 h t = 343.3 h

t = 340.3 h t = 345.3 h

Figure 18. Time-dependent Bénard convection: shadowgraph images taken every 24 hours (a–c)
and every 2 hours (d–f) from an experiment of long duration. Parameters are ε = 4.8, Γ = 64,
dl = 1.41 mm, dg = 0.26 mm, Pr = 100, τh = 5.6 h.

more than four (square cells) or six (hexagonal cells) basic modes. In the case of clearly
separated peaks we use the pairwise largest peaks as the basic modes. If we find two
or more narrowly located sub-peaks we take the first moment of these sub-peaks as
representative of the basic mode. On the time scale on which we have studied the
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Figure 19. Time dependence of the angular positions of the main Fourier peaks in a hexagonal (a)
and a square (b) subdomain of the pattern. Parameters as in figure 18.

structure we find an erratic rather than periodic behaviour of these basic modes.
One recognizes, further, that the movement of the dominant cell domains of a given
symmetry cannot strictly be considered as the movement of a rigid body. Slight
deviations in the temporal behaviour between the basic modes can be found. This is
a hint of local stresses leading to the deformation of the cell domain. The internal
deformation is particularly pronounced between t = 40τh and t = 45τh in figure 19(a)
and between t = 55τh and t = 60τh in figure 19(b).

A second observation is that the hexagonal and the square cell domains obey
different time dependences. This is particularly visible at t = 55τh, where a local
minimum in the φi of the hexagonal modes coincides with a maximum in the φi of
the square modes. A minimum (maximum) in the angular location equals a rotation
away from the average position in the clockwise (counterclockwise) direction. So
we can interpret this behaviour as a kind of counter-rotation of cell domains with
different symmetry. As a consequence, the angle between a particular mode of the
hexagonal domain and that of the square domain becomes larger while other modes
of the corresponding domains come closer together. This means that hexagonal and
square domains move towards a common symmetry line. This counter-rotation could
be one possible Fourier-space representation of the elementary process underlying the
transformation.

We return to the physical space and plot in figure 20 the change in the composition
of the pattern as a function of time. The fraction pi of cells of a particular planform
undergoes fluctuations of up to 7% of its average value. This is an expression
of a permanent transformation from one cell planform into another one. While
in the interval t = (37 . . . 50)τh the planform fluctuations between hexagons and
pentagons occur at nearly constant p4, we notice between t = (50 . . . 60)τh a crossover
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Figure 20. Time dependence of the cell fractions pi(i = 4, 5, 6) as obtained from the experiment of
long duration. Same parameters as in figure 18.

to fluctuations between squares and hexagons at nearly constant p5. Figure 20 supports
the idea that counter-rotation might be a Fourier-space translation of the elementary
transformation process. Slightly above t = 55τh we find the p6-decrease to be correlated
with a p4-increase. In figure 19 we have identified in this time interval the maximum
degree of counter-rotation between hexagonal and square domains.

Before we discuss the sources of the time-dependent behaviour found in the
experiment we ask what happens in the simulation. In figure 21 a time series at large
ε = 11 is shown for Pr = 20. Square cells are the dominating planform although
some defects are present. These are mainly localized in the middle right part of each
picture. At a first glance, similar processes as observed in the experiment take place
around these regions. Cells of different planform transform permanently into each
other. The marked difference to the experiment at Pr = 100 consists, however, in the
non-stationarity of the square cells. This phenomenon is illustrated in figure 22 which
shows a quadruple of cells. The central cell knot of the quadruple (figure 22b) splits
into two narrowly spaced cell knots which move along the line drawn in figure 22(a).
Consequently, one pair of cells retains its square planform while the other pair gets
an additional edge. If a certain edge length is reached the motion is reversed. Half of
the period of the oscillation is completed when the two cell knots have merged once
more. Then, this process starts again, but the direction of motion jumps by an angle
of 90◦. This type of non-stationary square only occurs in a limited range of Prandtl
numbers. By Pr = 40 the squares are stationary at the same ε = 11. The domains of
square cells are surrounded by defects. After passing through a transient the entire
pattern becomes stationary at this Prandtl number, too.

This result does not contradict to the time dependence found in the experiment
at Pr = 100 since experiment and simulation differ in two important aspects. First,
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t = 13 t = 17 t = 21

t = 25 t = 29 t = 33

Figure 21. Time-dependent Bénard convection in numerical simulation. Plotted are the isotherms
with increasing integration time at ε = 11 and a Prandtl number Pr = 20. The square cells display
a special type of non-stationarity which is explained in figure 22. Between the three cell planforms
permanent transitions take place.

(a) (b) (c)

t = 55 t = 58 t = 71

Figure 22. Non-stationary square cells at Pr = 20: Periodic splitting and merging of cell knots in
a square subdomain. The equilibrium position around which the oscillation occurs is shown in (b).
By splitting of the central cell knot (b) two new cell knots are produced which move along the line
drawn in (a). The new edge does not extend beyond a certain length, at which extent of separation
the direction of motion is reversed, leading to repeated merging of both cell knots. The process
starts again, whereby the direction of motion is now rotated by an angle of 90◦ (c).

the higher aspect ratio of the experiments admits a larger number of degrees of
freedom. Second, the periodic boundary conditions do not take into account the
natural geometry of the experiment. Nevertheless, we have to find the sources of
the time dependence in the experiment. The main contribution, analogously to the
simulation, is the mean flow generated by the defects in the pattern. In the first
place these are the pentagons which separate hexagonal and square domains. At
the front of the pentagons, directed towards the hexagonal cells, the mean flow
promotes further merging of cell knots. At the opposite side, directed towards the
squares, it again supports the splitting of cell knots. These processes are equivalent
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to the transformation of one cell class into another one. The transformations proceed
with different intensity in experiment and simulation because the mean flow in the
simulation is clearly weaker. As discussed in §5.1 the mean flow in the simulation is
proportional to L2/Pr where L is the periodicity length. Since L is considerably smaller
than the diameter of the experimental container, the numerical mean flow experiences
a stronger damping than that in the experiment. This effect makes plausible why the
time dependence is expected to subside in the simulation at lower Prandtl number
than in the experiment.

A second contribution to the time dependence comes, as correctly argued by one of
the referees, from a non-homogenous pinning of the contact line to the Plexiglas ring.
To estimate this effect we replace the projector within our optical arrangement by a
HeNe-laser. In general, we observe at two places at the Plexiglas ring a significant
shift of the Fizeau fringes resulting from interference between the bottom and the
sapphire window. At Tb−Tw = 0, this non-uniformity amounts to 15-25 fringes which
equals 4–8 µm. The tangential extent of these regions is about 5-10 mm. The extent
normal to the wall is smaller than 3 mm which corresponds to the capillary length
δ = (σ/ρlg)1/2 = 1.5 mm of the liquid. In the course of the experiment the location of
the regions with non-perfect pinning remains fixed while the non-uniformity becomes
stronger with increasing ε. The temperature perturbation caused by such a region
gives rise to a secondary STD flow in the immediate vicinity of the wall. Depending
on the direction of the velocity vector, relative to the tangential vector of a cell
edge, this secondary flow can again promote the merging/splitting of cell knots. In
this way the perturbation can cause dynamics near the wall which is in some sense
similar to that forced by the mean flow. Due to the limited extent of the perturbed
regions, however, the secondary flow influences directly not more than three cells
near the wall. Planform changes of these cells of course can modify the shape of
cells over a smaller area. But it is unlikely that this rather short-ranging mechanism
is responsible for the time dependence in regions located 60–80 mm away from the
places of non-homogenous pinning of the contact line.

7. Conclusions
We have studied the evolution of surface-tension-driven Bénard convection cells

up to ε = 8 by a combination of accurate experiments and high-resolution three-
dimensional simulation. We find that sufficiently far from the threshold for onset of
the primary instability hexagonal cells lose their stability in favour of convective cells
with square planform. Experimental observation shows that this secondary instability
occurs at εs = 4.2 ± 0.3 (Pr = 100). This value is about 35% smaller than that
predicted by the simulation. The bifurcation is subcritical, which follows from the
observed hysteresis. Experiment and simulation yield nearly the same subcriticality
of ∆ε = −0.5 ± 0.1. The transition from hexagons to squares is accompanied by
an increase of the Nusselt number. In the experiment we find a strong correlation
between the increase of the number of square cells and the change in slope of both
heat flux and temperature drop in the upflow measured by small thermocouples. From
this observation it follows that square Bénard cells are indeed the more efficient mode
of heat transfer than hexagonal cells beyond εs. This fact is confirmed by numerical
simulations of both medium aspect ratios and elementary cells of hexagonal and
square planform, respectively. Studying experimentally the wavenumber of hexagonal
and square cells we find by two independent approaches that square cells possess a
wavenumber which is about 8% higher than that of hexagonal cells. The numerical
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simulations show that the Prandtl number plays an important role within the hexagon–
square transition. On decreasing the Prandtl number the onset of the transition is
shifted towards smaller εs. In parallel, the square cells become more and more
organized in regular domains. At Pr = O(1) the coexistence between hexagons and
squares is replaced by a competition between rolls and squares.

The transition from hexagons to squares is mediated by pentagonal cells. Within the
transitional regime, characterized by the presence of all three planforms, the exper-
imental system exhibits complex irregular dynamics. Numerical simulation displays
qualitatively similar dynamics which is, however, restricted to the Prandtl number
range 25 6 Pr 6 40. Beyond Pr = 40 the pattern is stationary. Below Pr = 25,
the square cells become non-stationary which is manifested in periodic merging and
splitting of cell knots. We see two reasons for the difference between experiment
and simulation with respect to the Prandtl number beyond which time-dependent
behaviour vanishes. First, the mean flow in the simulation is dampened considerably
more strongly than the experiment. Second, in the lateral boundary conditions of the
experiment there are residual imperfections which are below the threshold of control.
These imperfections are caused by a non-homogeneous pinning of the meniscus along
the rim of the container. The temperature perturbation arising from this effect gives
rise to a secondary STD flow. In the immediate vicinity of the wall this flow has
dynamics comparable to that produced by the mean flow. It is however unlikely
that this rather short-ranging mechanism is responsible for the dynamics observed
in the central parts of the container. Moreover, the virtual source for this dynamics
is the mean flow, mainly produced by the pentagonal patches of the pattern. In the
hexagonal cells at the front of the pentagons the mean flow supports further merging
of cell knots. At the back, directed towards the squares, it again supports the splitting
of knots. In this way it leads to the slow fluctuations in the cell numbers pi which are
observed.

The weaker mean flow in the simulation should also be one reason for the difference
in the values of εs. Once a defect appears, e.g. a pentagon, the mean flow supports the
continuation of merging of cell knots in the neighbouring hexagonal cells. The stronger
mean flow is expected to trigger an earlier onset of the transition in comparison to
the simulation. An additional source of the difference is the buoyancy which has
been left out of the simulation. On the basis of previous experiments of Cerisier et
al. (1987b) and a recent work of Regnier et al. (1997), discussed in §5.1, we infer an
earlier onset of the transition in simulations performed at φ 6= 0. A more detailed
study of the effect of buoyancy on STDBC is in preparation. Another reason for
the deviation may arise from the fact that simulations relying on the Boussinesq
assumption are compared with experiments in a liquid whose material properties are
not strictly constant. The main non-Boussinesq contribution in the experiment comes
from the temperature dependence of the liquid viscosity. For the maximum value of
ε ∼ 8 we obtain

γ2 =
νl(Tb)− νl(Tb − (ε+ 1)∆Tc)

ν̄l
= −0.14

where ν̄l is the average value of the viscosity at the bottom and at the interface. Since
STDBC has no theory incorporating non-Boussinesq effects we consult the theory for
non-Boussinesq RBC (Busse 1967). From this theory we obtain an asymmetry factor
P ∼ P2γ2 = −0.4. This value is small in comparison to the deviations found usually in
RBC under non-Boussinesq conditions (cf. Walden & Ahlers 1981; Pampaloni et al.
1992). Moreover, non-Boussinesq effects are expected to shift εs towards higher values
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since the hexagonal mode of convection is stabilized due to the stronger top-down
asymmetry. However, the experimental value of εs lies below that predicted by the
Boussinesq simulation. From that fact, together with the small asymmetry factor P,
one can infer that non-Boussinesq effects are of minor importance in our system.

A comment is apposite regarding the integration of the hexagon–square transition
into the variety of pattern-formation processes in hydrodynamics. The hexagon–
square transition in STDBC is markedly different from other transitions which have
been studied so far. Square cells are predicted at onset of RBC in the case of thermally
insulating boundaries (Busse & Riahi 1980) and for convection with solidification
(Hadji, Schell & Riahi 1990). Experimentally, square patterns have been observed
in binary-liquid convection (Le Gal, Pocheau & Croquette 1985; Moses & Steinberg
1986), in RBC with strongly temperature-dependent viscosity (Oliver 1983; White
1988) or at constant viscosity and high Rayleigh numbers (Whitehead & Parsons
1978). However, none of these documented square patterns evolve from a hexagonal
planform, as in our case. In contrast to the competition between hexagons and rolls,
in RBC with non-Boussinesq effects (Ciliberto, Pampaloni & Pérez-Carcı́a 1988;
Pampaloni et al. 1992), and between hexagons and rolls, or squares and rolls, in
solidification problems (Davis, Müller & Dietsche 1984; Karcher & Müller 1995;
Hadji et al. 1990), a third pentagonal planform is involved in our transition.

While many aspects of the hexagon–square transition, such as the higher Nusselt
numbers and wavenumbers of square Bénard cells and the Prandtl number influence
are understood, a number of points remain unanswered. Among these are the time
dependence, the fine structure of flow and temperature fields and finally the question of
what happens after the square cells. Further, we wish to remark that non-Boussinesq
STDBC is worth studying because of its impact on modern technologies, such as
material processing with electron or laser beams.
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